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ABSTRACT

Detecting and tracking face regions in image sequences has
applications to important problems such as face recognition,
human-computer interaction, and video surveillance. Visi-
ble sensors have inherent limitations in solving this task,
such as the need for sufficient and specific lighting condi-
tions, as well as sensitivity to variations in skin color. Ther-
mal infrared (IR) imaging sensors image emitted light, not
reflected light, and therefore do not have these limitations,
providing a24-hour, 365-day capability while also being
more robust to variations in the appearance of individuals.

In this paper, we present a system for tracking human
heads that has three components. First, a method for mod-
eling thermal emission from human skin that can be used
for the purpose of segmenting and detecting faces and other
exposed skin regions in IR imagery. Second, the segmen-
tation model is applied to the CONDENSATION algorithm
for tracking the head regions over time. This includes a new
observation density that is motivated by the segmentation
results. Finally, we examine how to use the tracking results
to refine the segmentation estimate.

1. INTRODUCTION

While much work has been done on detecting [1, 2, 3] and
tracking [4, 5] humans in image sequences, most of the ef-
fort has been with visible sensors. Here we examine the
problem from the point of view of a thermal IR sensor. In
particular we examine both mid-wave (MWIR) and long-
wave (LWIR) sensors.

There are several advantages of using IR over traditional
visible wavelength sensors. These advantages arise from the
fact that most light in the mid-to-long wave IR is emitted
rather than reflected. [6] This leads first to a24-hour,365-
day capability since the scene will not be dependent on, and
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will be nearly invariant to, external lighting sources such as
the sun or man-made lights.

In addition to the lighting invariance, another aspect that
is of particular importance to detecting and tracking faces is
the relative uniformity of emissivity values of skin among
different members of the population. This contrasts to work
done in the visible spectrum, where albedo can vary signifi-
cantly from person to person. While work has been done on
finding invariants related to skin color in the visible spec-
trum [7], this problem can be much more easily solved with
a calibrated IR sensor. More information on calibrated IR
can be found in Section 2.

Given calibrated IR as its input, we present in Section 3
a model of skin imagery that can be used to segment im-
ages into three classes: skin, covered skin (as by clothes
or hair), and background, which is anything else. We work
with indoor environments, but allow for warm items such as
computers in the background, without significant distraction
from clutter.

Such an ability to differentiate between skin and back-
ground pixels can obviously be of great use when trying to
track face regions. Many tracking algorithms using visible
spectrum sensors use background subtraction [2] to serve
this function. [5] Such background subtraction typically re-
quires a fixed camera mount, or limited camera motion.
While it is possible to use motion to perform such segmen-
tation through 3D reconstruction [8], the relatively simple
pixel process that can be used in conjunction with thermal
IR sensors has significant advantages in computational cost,
robustness, and the ability to detect stationary targets.

With the segmentation, we proceed in Section 4 to per-
form tracking. We use the segmentation as a feature set to
track with, which has several advantages of the more tradi-
tional approach of using edge features and contours. First,
since the quality of the skin segmentation is sufficient for
head detection, the tracker can self-initialize reliably. The
second advantage of using the higher-level features is that
the tracker is less prone to distractors. This is because most
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Fig. 1. Uncalibrated (left) and calibrated LWIR images.
There is significant pixel-wise non-uniformity in responsiv-
ity which is removed by the calibration process.

of the background is classified as such. While some regions
may be miss-classified, their extent tends to be minimal.

Just as the results of the segmentation can be useful for
tracking, the results of tracking can aid in the segmenta-
tion. Since the segmentation algorithm is trained on a fixed
population, and environmental conditions and variations in
the population can cause variations in the observed intensi-
ties of skin, we refine the skin-model estimate using data
collected from the tracker. This is described in detail in
Section 5. Finally, we present results and conclusions in
Sections 6 and 7.

2. FROM THERMAL VIDEO TO PHYSICAL
MEASUREMENTS

In order to perform proper analysis, it is necessary that ther-
mal IR imagery be radiometrically calibrated. Radiometric
calibration achieves a direct relationship between the gray-
value response at a pixel and the absolute amount of thermal
emission from the corresponding scene element. This rela-
tionship is called responsivity. Thermal emission is mea-
sured as flux in units of power such asW/cm2. The gray-
value response of thermal IR pixels for LWIR and MWIR
cameras is linear with respect to the amount of incident ther-
mal radiation. The slope of this responsivity line is called
thegainand they-intercept is theoffset. The gain and offset
for each pixel on a thermal IR focal plane array is signifi-
cantly variable across the array. That is, the linear relation-
ship can be, and usually is, significantly different from pixel
to pixel. This is illustrated in Figure 1 where both calibrated
and uncalibrated images are shown of the same subject.

While radiometric calibration provides non-uniformity
correction, it also provides the further advantage of data
where environmental factors contribute to a much lesser de-
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Fig. 2. The Planck curve for a black-body at303K (roughly
skin temperature), with the area to be integrated for an8 −
12µm sensor shaded.

gree. This is due to the relationship back to a physical pa-
rameter of the imaged object, its emissivity.

Since the responsivity of LWIR/MWIR sensors is very
linear, the pixelwise linear relation between grayvalues and
flux can be computed by a process of two-point calibra-
tion. Images of a black-body radiator covering the entire
field of view are taken at two known temperatures, and thus
the gains and offsets are computed using the radiant flux for
a black-body at a given temperature.

Note that this is only possible if the emissivity curve of
a black-body as a function of temperature is known. This is
given by Planck’s Law, which states that the flux emitted at
the wavelengthλ by a blackbody at a given temperatureT
in W/(cm2µm) is given by

W (λ, T ) =
2πhc2

λ5
(
e
hc
λkT − 1

) (1)

whereh is Planck’s constant,k is Boltzmann’s constant, and
c is the speed of light in a vacuum. To relate this to the flux
observed by the sensor, the responsivity,R(λ) of the sensor
must be taken into account. This allows the flux observed by
a specific sensor from a black-body at a given temperature
to be determined:

W (T ) =
∫
W (λ, T )R(λ)dλ . (2)

For our sensors, the responsivity is very flat between8 and
12 (3 to 5 respectively) microns, so we can simply integrate
Equation 1 forλ between8 and12. The Planck curve and
the integration process are illustrated in Figure 2.

One can achieve marginally higher precision by taking
measurements at multiple temperatures and obtaining the
gains and offsets by least squares regression. For the case



of indoor thermal images containing human faces, we take
each of the two fixed temperatures to be below room tem-
perature and above skin temperature, to obtain the highest
quality calibration for all levels of IR emission.

It should be noted that calibration has a limited life span.
If a LWIR/MWIR camera is radiometrically calibrated in-
doors, taking it outdoors where there is a significant ambi-
ent temperature difference will cause the gain and offset of
linear responsivity of the focal plane array pixels to change.
Therefore, radiometric calibration must be performed again.
This effect is mostly due to the optics and focal plane ar-
ray (FPA) heating up, and causing the sensor to ‘see’ more
energy as a result. Also, suppose two sequences are col-
lected with different LWIR/MWIR cameras but with the ex-
act same model number, identical camera settings and under
the exact same environmental conditions. Nonetheless, no
two thermal IR focal plane arrays are ever identical and the
gain and offset of corresponding pixels between these sepa-
rate cameras will be different. Radiometric calibration stan-
dardizes all thermal IR data collections, whether they are
taken under different environmental conditions, with differ-
ent cameras, or at different times.

3. MODELING SKIN IN THERMAL IR

For the purposes of segmentation, we classify pixels in in-
door scenes as belonging to one of three classes: exposed
skin, covered skin (by clothing or hair), and background
(everything else).

Our goal is a probabilistic model that can help segment
these three regions. This takes the form:

P (c|r) ≡ P (ci|r), (3)

wherec ∈ C = {cS , cC , cB} = {c1, c2, c3} are the three
classes of interest. Of course, in general we could classify
into n categoriesc1, c2, . . . , cn. The images we are seg-
menting come from a calibrated image,R, andr is the radi-
ance coming from the pixel inR under consideration.

We use a time-dependent model for the scene’s flux prob-
ability density of the form

P t =
n∑
i=1

πtiP
t
i ,

n∑
i=1

πti = 1, (4)

whereP ti is the class-conditional density for classci, and
πi are the class priors at timet. The initial class-conditional
densitiesP 0

i are obtained from training data, by hand seg-
menting the desired classes in a video sequence, and esti-
mating the corresponding densities. Note that we assume
no parametric form forP ti , for anyt ≥ 0.

While the densitiesP 0
i can be estimated from training

data, the class priorsπti cannot, since the relative abundance

of each class in the training sequence may not be representa-
tive of that in the test data. However, given an image frame
Rt at time t > 0, we can estimate the optimal priors in
the maximum likelihood sense. At this point it should be-
come clear why we choose to segment into three classes.
Although we are interested only in skin and background for
the purposes of detection and tracking, modeling the back-
ground as two components is useful. Since our prior model
of background cannot take into account all possibilities, we
break it into the two most prominent components, those be-
ing covered skin and room temperature office objects. Since
we do not know the relative frequencies of these classes
ahead of time, we adjust them along with the prior for the
skin class at this point. This is done by maximizing the log-
arithmic likelihood ofRt as a function of the priors, given
as

logL =
∑
r∈Rt

log

[
n∑
i=1

πtiP
t
i (r)

]
(5)

We can compute the corresponding partial derivatives as

∂ logL
∂πtj

=
∑
r∈R

P tj (r)∑n
i=1 π

t
iP

t
i (r)

. (6)

Note that the maximization of Equation 5 should be per-
formed forπt = (πt1, π

t
2, . . . , π

t
n) in the convex constraint

set

K = {x ∈ Rn |
n∑
i=1

xi = 1, xi ≥ 0}, (7)

where subscripts denote coordinate components, andn = 3
in our case. Geometrically,K is the face of the unit sim-
plex in Rn which does not lie on a coordinate plane (see
Figure 3).

In order to maximize Equation 5 numerically, we use
the method of iterated projections [9]. LetΦK : Rn →
K denote the projection map onto the setK (guaranteed
to exist by the convexity ofK). The method of iterated
projections proceeds according to the following scheme

πt,k+1 = ΦK(πt,k + ε(∇ logL)(πt,k)), (8)

with ε > 0. This scheme converges to a local maximum
πt,∞ of Equation 5. It remains to show the construction
of ΦK . For x ∈ Rn, the projection onto the hyperplane
passing through the standard basis vectorsei, i = 1, . . . , n,
is given by

(Φ1
K(x))i = xi +

1
n

(1−
n∑
j=1

xj). (9)

The projection from the hyperplane onto the constraint set
K is given by

(Φ2
K(x))i =

{
0 if xi < 0
xi + 1−S+

C+ otherwise
(10)
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Fig. 3. Constraint set for the maximum likelihood estima-
tion of mixture parameters.

whereS+ is the sum of the non-negative coordinates ofx,
andC+ is the number of strictly positive coordinates. Now
the desired projectionΦK can be written asΦK = Φ2

K◦Φ1
K .

In order to obtain a good estimate of the global maxi-
mum likelihood, we use the scheme in Equation 8 within an
iterative random restarts loop. Multiple runs of the con-
strained local optimization are performed starting at ran-
dom perturbations of the best local optimum in order to lo-
cate a (hopefully) global optimum. As with any non-convex
global problem, we have no guarantee of finding the global
maximum, however, in experiments with synthetic data the
method described above is able to find close-to-optimal so-
lutions.

Once the optimal class priors have been determined, the
mixture (Equation 4) constitutes our estimate of the proba-
bility density for the thermal flux in the current video frame.
Recall that our intermediate goal is to obtain the posterior
probabilities for each of our constituent classes (skin, cov-
ered skin and background). These can be computed from
the information at hand via Bayes rule, which in this con-
text takes the form

P t(cj |r) =
πtj P

t
j (r)∑n

i=1 π
t
iP

t
i (r)

. (11)

Equation 11 allows us to compute, for any given pixel
in the current frame, the likelihood of belonging to each
class, and thus constitutes a soft segmentation of the image.
This process can be repeated for each incoming frame, to
obtain updated estimates based on the latest data. While

Fig. 5. Left: Training densities for skin, clothing and back-
ground. Right: Comparison of the histogram for the LWIR
frame in Figure 4 with maximum likelihood estimate based
on the training densities on the left.

we have adorned our class conditional densitiesP ti with a
superscript denoting time, we have not yet explained how
those densities vary ast changes. The time-adaptation of
the class conditional densities is discussed in Section 5, after
the tracking procedure has been introduced.

A result of applying the posterior density estimation de-
scribed above to a LWIR/MWIR image is shown in Fig-
ure 4, where we can see probability images for exposed
skin, covered skin and background. Some intuition into the
maximum likelihood method may be gained from Figure 5,
where we see the training densities (building blocks), to-
gether with a comparison of the actual frame histogram with
the ML estimate. Note how the class priors are correctly es-
timated, yielding a very good semi-parametric estimate of
the actual density.

We should mention that it is possible to incorporate the
class priors into the variable representing the tracking state
(see Section 4), but doing so increases the dimensionality of



Fig. 4. Probabilities of skin, clothing or hair covered skin and background computed via Equation 11.

the state space. This degrades our ability to estimate prob-
ability densities, and sharply increases the computational
cost of such estimation. We avoid this by separating the
estimation of class priors from the tracking stage itself. Fur-
thermore, the class priors are independent of the position of
the tracked object within the scene, and of its motion pa-
rameters, so by decoupling their estimation from that of the
tracking state variable we incur no accuracy cost.

4. TRACKING SKIN IN THERMAL IR

Let us review the basics of Bayesian tracking. Once a soft
segmentation has been computed, we can use it to track
faces in the scene. We model faces simply as arbitrarily
oriented ellipses, with variable sizes and positions. LetX
denote the state space of all such ellipses. The task of track-
ing consists of selecting an element ofX for each video
frame at timet. More generally, one normally wishes to es-
timate a probability density on the state space, encoding the
likelihood that the tracked object is in a given configuration.
Once this density has been computed, a number of estima-
tors can be applied in order to recover the single state which
we believe best corresponds to the object’s parameters. In
our case, we use the MAP estimator, which simply selects
the state with highest likelihood.

Reasoning on the relative likelihood of different states
in X is based on a series of independent observations up
to time t, Zt = {Z1,Z2, . . . ,Zt}, corresponding to con-
secutive frames of video. These observations are related to
states inX via an observation modelQ(Zt|xt). Further-
more, successive states are related via a dynamical model
xt = f(xt−1), which expresses the physics that govern the
system. For instance, it might relate velocity to position, or
it might describe how uncertainty increases over time. Al-
though this rule may not be known explicitly, one assumes
that there is some model of it that is known, and is expressed
asQ(xt|xt−1).

Armed with these models, and the observationsZt, it

is possible to determineQt(xt|Zt), the desired probability
density on the state spaceX , by an application of Bayes’
rule combined with the dynamics equation to obtain:

Qt(xt|Zt) =
Qt(Zt|xt)
Qt(Zt)

×∫
xt−1

Qt(xt|xt−1)Qt−1(xt−1|Zt−1)dxt−1 (12)

If the densities in Equation 12 are not Gaussian, and/or
the dynamics model is non-linear, the numerical computa-
tion of Equation 12 is complex and time consuming, as there
is no closed-form method for evaluating the left-hand-side.
As is now standard in the tracking literature, we use a parti-
cle filter method for estimating the posterior densities, as in
the CONDENSATION [10, 11] algorithm.

To evaluateQ(Zt|xt), whereZt is an observation (i.e.
an image), we look at a series of fixed-length segments pierc-
ing the boundary of the ellipse. In order to minimize compu-
tational time, the segments lie on a fixed grid on the image
plane, as shown in Figure 6. We wish to compute the like-
lihood that a conjectured model (an ellipse in this case) ex-
plains the observed data. That is the likelihood that a given
ellipse coincides with the boundary of a face. If the seg-
ments piercing the ellipse’s boundary are not too close to
each other, this can be well approximated by the product
of the likelihoods that each single segment intersects the
boundary of a face. Thus it remains to compute that like-
lihood for a single segment.

This quantity is computed under the hypothesis that the
conjectured ellipse does indeed correspond with a face bound-
ary. Under that hypothesis, we can assume that radiances on
the ‘interior’ half of the segment are drawn independently
and identically distributed with respect to the class condi-
tional density for skin, as estimated in Section 3. On the
‘exterior’ half of the segment, we can assume that the ra-
diances have been drawn likewise, but with respect to the
complementary density (the probability of not-skin). In or-
der to cope with the uncertainty as to the appearance of pix-



Fig. 6. Example of segments on a fixed grid used to compute
the likelihood of the conjectured model given the data.

els immediately nearby the boundary and the non-elliptical
nature of the human face, we may ignore radiances com-
ing from pixels on the segment immediately adjacent to the
boundary of the ellipse. Decomposing theith segment as a
union of interior, exterior and middle, we write the corre-
sponding likelihood as

SLi =

[ ∏
interior

Ps(r)

] [ ∏
exterior

Pns(r)

]
, (13)

and therefore

Q(z|x) =
N∏
i=1

SLi, (14)

whereN is the number of segments piercing the ellipse
x ∈ E . In order to obtain a more robust estimate of the rel-
ative likelihoods for different hypothesized states, instead
of taking the product of the individual pixel posterior likeli-
hoods, we average the likelihoods for groups of three pixels
along the piercing segment, and multiply those values as in
Equation 13.

Since faces are positioned above the neck, there is nor-
mally no direct transition from skin to background or cloth-
ing at the bottom boundary of the face. Computing Equa-
tion 13 including segments piercing the lower portion of the
ellipse would bias our likelihood estimate, since we do not
expect to see skin/not-skin transitions in that area. There-
fore, we ignore an elliptical arc spanning an angle of45◦

about the bottom of the ellipse.
We use a simple dynamical model of the form

Qt(xt|xt−1) = K(xt−1 − vt), (15)

whereK is a kernel composed of two Gaussian distribu-
tions, as pictured in Figure 7. One of the Gaussians has
small variance, and is intended to thoroughly explore the
area of state space where the maximum likelihood is ex-
pected to occur. The second, higher variance component is
meant to explore the surrounding area in case the estimated
position for the maximum likelihood state is incorrect. The
vt term in Equation 15 is an estimate of the velocity at which
the tracked object is moving in the plane, and thus all but
two of its five coordinates are zero. We obtain an estimate
of vt using a recursive filter on instantaneous estimatesv̂t,
as follows

v̂t = E[Qt−1(xt−1|Zt−1)]− E[Qt−1(xt−2|Zt−2)],(16)

vt = β v̂t + (1− β) v̂t−1, (17)

whereβ is the learning rate, which we set at0.25. These
simple dynamics give us a rather robust estimate of velocity,
under the assumption of generally uniform motion. The es-
timate degenerates somewhat when the tracked object speeds
up or changes direction, but it recovers quickly, as the high
variance component of Equation 15 searches for the object
in an extended neighborhood of its expected location.

Much like for the class priors estimated in Section 3, it is
possible (maybe even customary [10, 11, 12, 13]) to include
the velocity parameters into the state variable for the tracked
object. However, once again, this increases the dimension-
ality of the state space, thus rendering density estimation
less accurate and more computationally expensive. For that
reason, we separate the velocity estimation from that of the
other state variables. Our velocity estimate is not meant
to be very precise, just a rough guess to aid the Bayesian
tracker by exploring more thoroughly the space about the
expected location of the target. Experimentally, we see that
the estimate is accurate enough to achieve this goal.

5. TRACKING-DRIVEN ADAPTATION

Section 3 introduced the ideas involved in estimating the
posterior flux densities for each material class, based on
hand-labeled training data, maximum likelihood estimation
of class priors and Bayes Rule. However, it did not deal
with the issue of adaptation of the class conditional densi-
ties, moving them away from the training data to better fit
the observed radiances. That is the subject of the current
section.

Let us suppose for a moment that at a given time step,
we know the tracker has successfully located the skin re-
gion. Under this assumption, we have access to a sample of
radiances from the skin class (those pixels in the interior of
the region) which is more representative of the appearance
of skin in this particular video sequence, and for this par-
ticular individual, than the training data used to estimate the
skin density. Therefore we should be able to update our skin
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Fig. 7. Mixture of Gaussians kernel used in the dynamics
model.

density estimate to better match the current conditions. Of
course, in reality we do not know whether the tracker has
correctly located the skin area, and thus cannot directly up-
date our estimates. We now propose a confidence criterion
which will allow us to carry through a similar procedure
without resorting to unobtainable ground truth information.

The result of our CONDENSATION tracker developed
in Section 4 is a probability density functionQ (or an es-
timate thereof) on a configuration space representing the
possible states of the tracked target in the scene. This den-
sity represents the likelihood that the tracked object is in a
certain configuration given the current video frame and the
history of the object’s states. In Section 4 we used the MAP
estimator to arrive at the position of the object based on this
density. We propose to use the uncertainty inQ as an in-
dication of how likely the tracker is to have succeeded in
locating the target. The uncertainty inQ can be measured
by its entropy:

H(Q) =
∫
E
Q logQ, (18)

where the logarithm is understood to be zero whereverQ
vanishes. It can be shown that for continuous spaces, the
distribution with lowest entropy is the delta distribution, and
the highest entropy for a fixed variance is attained by the
normal distribution with that variance. For discrete proba-
bility spaces, the lowest entropy is achieved by a distribu-
tion whose mass is concentrated at a single point, and the
highest by the uniform distribution.

Estimating the uncertainty of a high-dimensional non-
parametric density is not a computationally straightforward
task. This is a direct consequence of Bellman’s curse of
dimensionality. [14] While the entropy as defined in Equa-
tion 18 gives an exact measure of the uncertainty of the un-

derlying distribution, we can construct a related measure
which can be estimated much more readily. Let the un-
derlying space of the probability densityQ beRn, and for
1 ≤ i ≤ n, denote byQi the marginal density ofQ with
respect to theith coordinate:

Qi(xi) =
∫
Q(x1, . . . , xn)dx1 . . . ˆdxi . . . dxn, (19)

where ˆdxi denotes ommission of theith coordinate differ-
ential. The chain rule for entropies states that

H(Q) =
1
n

n∑
i=1

H(Qi) +
1
2

n∑
i,j=1

H(Qi|Qj), (20)

where the second term is the sum of the relative entropies
between the respective marginals. On the other hand, we
also have that

H(Q) =
n∑
i=1

H(Qi)−
1
2

n∑
i,j=1

I(Qi, Qj), (21)

where the second term is the sum of the mutual informations
between the respective marginals. It follows from Equa-
tions 20 and 21 that

1
n

n∑
i=1

H(Qi) ≤ H(Q) ≤
n∑
i=1

H(Qi), (22)

with equality attained on the left when all marginals ofQ are
equal, and on the right whenQ is a product of its marginal
densities.

As a consequence of the previous discussion, for a fixed
dimension, the average entropy of the marginals ofQ, de-
notedH̄(Q), is uniformly equivalent to the entropy ofQ
itself, and thus is equally useful to us as a measure of the
uncertainty inQ. In contrast withH(Q), however,H̄(Q)
can be easily estimated even for non-parametric densities,
since it relies only on one-dimensional computations.

We can learn the relative entropy values for ‘good’ and
‘bad’ tracking by observing the tracker’s behavior on train-
ing sequences. From this we obtain upper and lower bounds
for the mean marginal entropy of the posterior state-space
densityQt, denotedH̄min andH̄max. Using these learned
bounds, we define the adaptation rate by

αt = min(max(
H̄(Qt)−Hmin

H̄max − H̄min
, 0), 1). (23)

Using the adaptation rate, we modify our class-conditional
density for skin,P t+1

1 as follows

P t+1
1 = αt P

t
1 + (1− αt) ξt, (24)

whereξt is a non-parametric estimate of the greyvalue dis-
tribution strictly inside the MAP tracking state.
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Fig. 8. Entropy as a function of time for an intentionally
distracted CONDENSATION tracker. Note the rise and fall
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Fig. 9. Estimates of the probability of skin before and after
adaptation.

Figure 9 shows the effect of adaptively learning the prob-
ability density for skin based on entropy-weighted tracking
results. These images show the (posterior) probability-of-
skin images without and with adaptation. Note how some
background objects such as the warm chassis of a computer
monitor look somewhat like skin on the image on the left.
Additionally the pixels on the wall behind the subject have a
small, but non-negligible probability of skin. With tracking-
driven adaptation we obtain the image on the right, where
essentially all distractors have been ruled out, and the only
pixels with significant probability of being skin are those on
the subject’s face.

6. EXPERIMENTAL RESULTS

We performed tracking experiments on several LWIR and
MWIR indoor image sequences. Training and testing data
was acquired and calibrated according to the procedures
outlined in Section 2. Using a typical hand-segmented frame
from the training sequence, we create initial histogram es-
timates for the class-conditional densities of skin, clothing
or hair-covered skin, and background. These, together with
a test sequence, are the initial inputs to our tracker. Typical

results for the soft segmentation portion of the algorithm
can be seen in Figure 4.

Detection of the face and tracker initialization are done
automatically by seeding the first image frame with a uni-
form distribution of particles representing ellipses at differ-
ent positions, sizes, and orientations. After the first frame,
the estimated densities evolve according to the Bayesian
tracking procedure in Section 4. Figure 10 shows the initial
estimate of the face location, obtained without operator in-
tervention, and four typical frames from an80 frame MWIR
sequence. Note that the initial estimate is rather good, but it
greatly improves as the tracking process evolves.

We collected ground-truth positions of the subject’s head
for the sequence in Figure 10, by hand-placing the ellipse
best fitting the face in each frame. Figure 11 shows a com-
parison of ground-truthx− andy-coordinates of the center
of the ellipse for each of the80 frames in the sequence. The
mean absolute (L1) error for thex-coordinate estimate is
1.6 pixels, with a standard deviation of1.37 pixels, while
for the y-coordinate we obtain a mean error of2.9 pixels,
with a standard deviation of2.0 pixels. We should note that
estimating the vertical position of the best bounding ellipse
is a harder task for both the human operator and the auto-
mated tracker, since the hairline and chin are not as clear in
the images as the sides of the face.

We can validate the dynamical model in Equation 15 by
comparing the velocity estimated using the recursive filter
(Equation 17) with that obtained by differencing the ground-
truth position data. This comparison is shown in Figure 11,
in which we see that after a brief period of uncertainty, the
estimate is a good approximation to the observed velocities.
Recall that this estimate is obtained without adding velocity
variables to the state space, and is therefore not the same
as that which we might obtain by differencing the position
estimates. In fact, our velocity estimate is predictive, and it
does not lag one frame behind the position estimate.

Lastly, we should mention the computational cost in-
volved in tracking using this method. Up to the present time,
we have made no effort to optimize the tracker for real-time
performance. As a result, it currently takes approximately
5 seconds to process each frame, on dual PIII1Ghz com-
puter with512Mb of memory. This falls clearly short of the
real-time standard, but we believe that judicious optimiza-
tion can yield processing times of over5Hz on currently
existing off-the-shelf hardware.

7. CONCLUSIONS

We introduced a methodology for tracking human faces in
calibrated thermal infrared imagery. The use of calibrated
imagery allows us to use training data acquired before the
tracking stage, with the assurance that its thermal flux val-
ues will be comparable to those measured during tracking.



Fig. 10. Initial estimate of face location (left), and tracking results for frames7, 18, 38 and 78 of an 80 frame MWIR
sequence.
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Fig. 11. Top: Estimates and ground-truth positions for
MWIR sequence in Figure 10. Bottom: Estimates and
ground-truth velocities for MWIR sequence in Figure 10

This calibration step is a critical difference between track-
ing in the visible and thermal domains. When working with
visible imagery, one has to worry about the effects of light-
ing and color constancy (or lack thereof) on the acquired
data. In sharp contrast with that situation, calibrated ther-
mal imagery gives us lighting invariant data, very suitable
for robust tracking.

Our method consists of several portions of independent
interest. Firstly we outline a scheme for modeling and seg-
menting skin, covered skin and background in thermal im-
agery based on training data plus a maximum likelihood es-
timation step. We model each frame’s histogram as a mix-
ture of non-parametric densities, and estimate the class pri-
ors in order to best approximate the actual flux density.

Tracking proceeds along the lines of the CONDENSA-
TION algorithm, with a likelihood model based on the pos-
terior densities for each of the three segmented classes. In
section 6 we show results of applying the tracker to stan-
dard indoor MWIR scenes. Furthermore, we compare our
results to hand-measured ground truth positions and veloc-
ities. This comparison shows that our tracker is very accu-
rate, usually within2 pixels of the hand-labeled face cen-
troid.

We go beyond simple tracking, by allowing the track-
ing results to feed back into the segmentation stage. This
is accomplished using the average marginal entropy of the
posterior state density as a measure of tracking accuracy.
Based on this measure, we can adapt our class-conditional
densities, thus yielding a better segmentation (and therefore
tracking) that can be obtained with pre-computed training
data alone.

A number of extensions of this work should be consid-
ered, including handling multiple subjects and the resulting
occlusion problem. The most interesting area for future re-
finement of this method lies within the feedback loop be-
tween the tracking and segmentation stages. While we pro-
vide an effective means of adapting the class-conditional
densities based on an entropy weighting criterion, there is
certainly room for further experimentation in this area. As
we mentioned above, real-time implementation of the algo-
rithm remains a challenge, but we believe it possible on off-
the-shelf hardware, after careful optimization. The promis-
ing preliminary results in this paper, together with the illu-



mination invariance properties afforded by thermal infrared
imagery, make this an attractive avenue of investigation.
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